Introduction to Quantum
computing and
superconducting qubits

NTHU Yen-Hsiang Lin(#R&:5F)

@Special topics of nano physics and emergent
quantum matters

2020/12/24



[l THE ROYAL
10.1098 /rsta.2003.1227 ®]& SOCIETY

Quantum technology: the second
quantum revolution

By JONATHAN P. DOWLING! AND GERARD J. MILBURN?

L Quantum Computing Technologies Group, Section 367,
Jet Propulsion Laboratory, Pasadena, CA 91109, USA
2 Department of Applied Mathematics and Theoretical Physics,
University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK and
Centre for Quantum Computer Technology, The University of Queensland,
St Lucia, QLD 4072, Australia

Published online 20 June 2003

We are currently in the midst of a second quantum revolution. The first quantum
revolution gave us new rules that govern physical reality. The second quantum revo-
lution will take these rules and use them to develop new technologies. In this review
we discuss the principles upon which quantum technology is based and the tools
required to develop it. We discuss a number of examples of research programs that
could deliver quantum technologies in coming decades including: quantum informa-
tion technology, quantum electromechanical systems, coherent quantum electronics,

quantum optics and coherent matter technology.
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What are the new technologies that
can be developed from quantum
mechanics?



Different facets of guantum Technologies

“European Quantum Technologies Flagship Programme”

e Quantum computation

e Quantum simulation OUANTUM

) ) FLAGSHIP
e Quantum communication O

e Quantum sensing and metrology

(https://ec.europa.eu/digital-single-market/en/quantum-technologies)
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What’s wrong with classical computer?



Moore’s Law: the number of transistors in
a dense integrated circuit doubles about
every two years.
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Limitation of of Moore’s Law

e Difficulty of fabrication
* Heat dissipation problem of nano-structures
* Quantum effects of nano-devices.

TR
it

7nm MOSFETs by TSMC

https://www.tsmc.com/english/dedicatedFound
ry/technology/logic.htm#|_7nm_technology
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Difficulty of simulating guantum

system
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Molecule model of The
enzyme hexokinase
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More efficient Method to Solve
Problem

* We develop new methods to solve problem more
efficiently.

Quantum Fourier transform quantum circuit
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What are quantum computers?



Question

Quantum computers:

Devices can store and process
information according to the
principles of guantum mechanics



Gate-based Quantum Computer

e Universal guantum computer.

* The processing of a task is based on a series of
unitary transformation of quantum states.

e Commonly use circuit model to describe process.
e Comparable to quantum algorithm development
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https://en.wikipedia.org/wiki/Shor%27s_algorithm




Quantum Annealer

 Cannot execute quantum circuit.
e Quantum optimization.

Dawave /o B

The Quantum Computing Company™
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Quantum Simulator

e Construct controllable quantum sub-system to
simulate real quantum system

e First Proposal: Feynman, Richard (1982).
"Simulating Physics with Computers"
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M. W. Johnson et al., Nature 473, 194(2011)



Other Type of Quantum Processor
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Type of Quantum Computer

e Gate-based Quantum Computer ‘

 Quantum Annealer(Quantum optimization)
e Quantum Simulator
e Special Task Quantum processor



What’s the difference between classical
computer and quantum computer?



Circuit Model of Computation

Three main elements of circuit model:

1. A set of values.
2. A set of gate labels.

3. Alabelled directed acyclic graph.

Example: The half adder(classical computation)
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Concept of Classical vs Quantum Computing

_ Classical Computing | Quantum Computing

Memory Unit Bit -> Byte 0)|1) => |¥)
Write in Initialize bytes Initialize [¥)
Computation Logic gate Apply Operators
X = [®) (VY]
Read out Read bytes Measure |¥)

(Born’s rule)



Single Quantum Bit(Qubit)

Qubit: Information stored in 1¥) = c1l0) + c2[1)
c1)? + 2> =1

Frequently use Bloch sphere representing |¥)

|0)

0
: cOS5 : T
W= (g ) = ot +esing )




Commonly Used Single Qubit Gate

Pauli-X (X) —x}- %(0 1)

Pauli-Y (Y) —Y

Pauli-Z (2) — Z

Hadamard(H) —H [

(
%
Phase (S) S — (
(

/8 (T) —T




Pauli X(X) gate

o= (00) (1))

|0) i |1)

https://quantum-computing.ibom.com/docs/circ-comp/qg-gates



https://quantum-computing.ibm.com/docs/circ-comp/q-gates

Pauli Y(Y) and Pauli Z(Z) gate

0 = (10
=i o 7 \o-

https://quantum-computing.ibom.com/docs/circ-comp/qg-gates
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Hardama Gate

// AL Generatesuperposition
states of [0) |1)

https://quantum-computing.ibom.com/docs/circ-comp/qg-gates
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S and T Gate

Phase (S) ( é O )
)

|+ — (10)+i|1))/v?2 — (|0y+iT/A]1))/v?2

https://quantum-computing.ilbm.com/docs/circ-comp/qg-gates
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Quantum Circuit Model

1



Quantum Circuit Model
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Use Qubits as the elements of value. It can be
0),]1), or [¥)



Quantum Circuit Model

0) — H

+
T

Each single wire represents a qubit ket. The convention
time is assumed to run from left to right in the diagram.
The state is not altered until the wire enters a quantum
gate or a measurement device.




Quantum Circuit Model

o

tl T tg | tB t4
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The quantum gates that represent operations to the
qubit kets.




Quantum Circuit Model

0) H — H — /f\
ol Us | |
= " 3 : !
1 to t3 )

The output qubit kets of previous gate become the
input of the next gate.



Quantum Circuit Model
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A measurement to readout the ket



Can we construct a qguantum algorithm that
works better than classical algorithm?



Can we construct a quantum algorithm that
works better than classical algorithm?

Deutsch’s algorithm(1985): The first quantum
algorithm outperformed classical algorithm.



Binary function f(x)

Consider a binary function f(x): only four possibilities

BN NN
0 0 0 1 1

1 0 1 0 1




Binary function f(x)

The output is independent of input: constant
function(Case A and D)

The output depends on input: balanced
function(Case B and C)

BN NN
0 0 0 1 1

1 0 1 0 1




Deutsch’s Problem

Give a binary function f(x), is f(x) a constant
function of balanced function?



Deutsch’s Problem

Give a binary function f(x), is f(x) a constant
function of balanced function?

Constant: f(0) = f(1)

—

Balanced: f(0) = f(1)



Classical Algorithm

Plug in 0 and 1. Find out f(0)=? and f(1)=? Then,
one can determine f(x) is a constant or a balanced

function.
At least two evaluations to find out f(0) and f(1)



Quantum Algorithm

Allow you to only evaluate f(x) once!

How?



Deutsch’s Algorithm

0) — H — H qﬁz
| Us | :
1) — H (— ! !
i1 12 3 l4

Let’s look results after each gate
First initialized two qubits to be |0) and |1)



Deutsch’s Algorithm

0) — H
1) — H
i1

Operation of two
Hadamard gates
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Deutsch’s Algorithm

0) — H — — H = qﬁz
o Ur | l
1) — H = ! !
i1 12 3 l4

1 1
After t1 Wran) = 5((0) + 1) ® (10) = 1)) = 3(100) +[10) = [01) = |11) )



Deutsch’s Algorithm

0) — H — H qﬁz
| | |
o Ur | l
1) — H = ! !
| | |
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1 12 3 La
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After 1 W) = 5100+ 1) © (0} = 1)) 3 (100) + 110} = jo1) 1))

A superposition states contained all possible combinations!



Deutsch’s Algorithm

0) — H — H qﬁz
| I |
| Y| l
1) — H = ! !
| I |
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t1 t2 t3 ta
1 1
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Quantum Parallelism



Deutsch’s Algorithm

0) — H — H qﬁz
o Ur | l
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1
After t2: [V (1) = 5 (10 @ [FO) + 1) @ IfFM) -0 @ fOel - elf1el)



Deutsch’s Algorithm

0) — H — — H = qﬁz
o Ur | l
1) — H ' !
i1 12 3 l4

Constant: f(0)

After t3:
Balanced f(0)

Quantum Interference



Deutsch’s Algorithm

0) — H — H qﬁz
o Ur | l
1) — H (— ! !
i1 12 3 l4

Constant: get O

After t4: Only evaluate f(x) once in U!
Balanced: get 1



Key Elements of Advantage in Quantum
Information

e Superposition + Quantum interference
* Entangle States



I”

Can we use a “real” quantum computer now?



I”

Can we use a “real” quantum computer now?

YES!I]



IBM Quantum EXxperience

 https://quantum-computing.ibm.com/

* You can construct your own quantum circuit online.

e Send your quantum circuit to a simulator or a real
IBM quantum computer to run!


https://quantum-computing.ibm.com/

IBM Quantum Experience i . . - o * Untitled Exp... x Q

Save Clear OpenQASM Help

Untitled Experiment Unsaved changes Run N
Save your experiment before running it
®© Composer help X Circuit composer Gates glossary
Gat
© The circuit composer is a tool that allows you ares

to visually learn how to create quantum . . . . . . X % Z D
<> circuits. Here are some resources to get you
rted.
. DEEOEHEEE

Composer guide Barrier Operations Subroutines

. mEE -
Gates glossary !

qlfe] |0)
ql1] [0}
ql2] |0)

q[3] |0}
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Histogram

Probabilities

Result of simulation(1024 times of
measurements)

00001



What are the possible qguantum systems
can be made to be quantum computer?



Current

Inductor

Superconducting loops
A resistance-free current
oscillates back and forth around
acircuit loop. An injected
microwave signal excites

the current into super-
position states.

Laser

Electron

Trapped ions

Electrically charged atoms, or
ions, have quantum energies
that depend on the location of
electrons. Tuned lasers cool
and trap the ions, and put
them in superposition states.

Microwaves

Silicon quantum dots

These “artificial atoms”
are made by adding an
electron to a small piece

of pure silicon. Microwaves
control the electron’s
quantum state.

Topological qubits
Quasiparticles can be seen
in the behavior of electrons
channeled through semi-
conductor structures.Their
braided paths can encode
quantum information.

Electron
—~

Laser

Diamond vacancies

A nitrogen atom and a
vacancy add an electron to a
diamond lattice. lts quantum
spin state, along with those
of nearby carbon nuclei,
can be controlled with light.



Current

Inductor

Superconducting loops
A resistance-free current
oscillates back and forth around
acircuit loop. An injected
microwave signal excites

the current into super-
position states.

Longevity (seconds)
0.00005

Logic success rate
99.4%

Company support
Google, IBM, Quantum Circuits

€ Pros

Fast working. Build on existing

semiconductor industry.

& Cons

Collapse easily and must
be kept cold.

Laser

Electron

Trapped ions

Electrically charged atoms, or
ions, have quantum energies
that depend on the location of
electrons. Tuned lasers cool
and trap the ions, and put
them in superposition states.

Very stable. Highest
achieved gate fidelities.

Slow operation. Many
lasers are needed.

Microwaves

Silicon quantum dots

These “artificial atoms”
are made by adding an
electron to a small piece

of pure silicon. Microwaves
control the electron’s
quantum state.

Stable. Build on existing
semiconductor industry.

Only a few entangled.
Must be kept cold.

Topological qubits
Quasiparticles can be seen
in the behavior of electrons
channeled through semi-
conductor structures.Their
braided paths can encode
quantum information.

Microsoft,
Bell Labs

Greatly reduce
errors.

Existence not yet
confirmed.

Electron

Laser

Diamond vacancies

A nitrogen atom and a
vacancy add an electron to a
diamond lattice. lts quantum
spin state, along with those
of nearby carbon nuclei,
can be controlled with light.

Quantum Diamond
Technologies

Can operate at
room temperature.

Difficult to
entangle.

Note: Longevity is the record coherence time for a single qubit superposition state, logic success rate is the highest reported gate fidelity for logic operations on two qubits,

and number entangled is the maximum number of qubits entangled and capable of performing two-qubit operations.

Science 02 Dec 2016: Vol. 354, Issue 6316, pp. 1090-1093 DOI:

10.1126/science.354.6316.1090



Quantum Hardware R&D!

Superconducting Trapped lons Quantum Dots
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How to build a superconducting qubit?



Building blocks of superconducting artificial atoms







Josephson AI/AIOx/Al tunnel junction:
a nonlinear dissipationless inductor
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Josephson AI/AIOx/Al tunnel junction:
a nonlinear dissipationless inductor
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P. Krantz et al, Appl. Phys. Rev. 6, 021318 (2019);



Josephson Junction Chain: Superinductor

Ly/VA>10*u0

enormous (kinetic) inductance!

Lin et al. Phys. Rev. Lett. 120, 150503 (2018)



Particle in a box physics: Design box!
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Particle in a box physics: Design box!
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Particle in a box physics: Design box!
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[Artificial atoms: engineerable energy states and transitions]




Confine Dynamics: Qubit
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[ Qubit: information storage within [v) ]




Time scale of loss information: T1 and T2
1 1
Ty 2Ty Ty
/ } \

Decoherence time Relaxation time Dephasing time




Time scale of loss information: T1 and T2
1 | 1
Ty 2T; T,
/ } \

Decoherence time Relaxation time Dephasing time

Relaxation

https://www.youtube.com/watch?v=IKp671qQjH4&list=PL40F1EEODF59D777A&index=1



Time scale of loss information: T1 and T2

111
Ty 2T; T,
4 | \

Decoherence time Relaxation time Dephasing time

Dephasing

https://www.youtube.com/watch?v=is8 TscwFOvVM&index=2&list=PLAOF1EEODF59D777A



“Periodic table” of superconducting qubits

ST
© o (]
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107 T
Quantronium 3 O Fluxonium
10"+
Transmon [ Flux qubit O
1024
Hybrid qubit O
10%1
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54
10 EJ/EC
v

Devoret & Schoelkopf , Science 339, 1169 (2013)



Control Sensitivity to Charge Noise: EJ/Ec

C a4
I :
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10" +
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10°1 Fy / Ee
v

Devoret & Schoelkopf , Science 339, 1169 (2013)
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Koch et al., Phys. Rev. A 76, 042319



Control Sensitivity to Various Noise Source

C 8 o
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10 EJ/EC S
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Vool & Devoret Int. J. Circ. Theor.

Devoret & Schoelkopf , Science 339, 1169 (2013) Appl. 45, 897 (2017)



Control Sensitivity to Various Noise Source
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Key element: fluxonium

e Highest T1, and T2 of single superconducting qubit
 Anharmonicity can be larger than few GHz

e Very rich multi-level system
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MIT group, Annual Review of Condensed Matter Physics 11, (2019)



Key element: fluxonium

e Highest T1, and T2 of single superconducting qubit
 Anharmonicity can be larger than few GHz

e Very rich multi-level system
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Demonstration world record T1

= 14.7

—_ 30
) 107 ¢ | - ny
— L
s “ S
@D =
E 107 . 140 <
3 ] 0 ~
- 1

100k 4 13.3

100 ————— =
~N :
T 2 \ .
S e\ fluxonium
= 1071 AN o
5 < ° @
@ 1
—
5 10-2 4 ~
2 1077
- ~
a 2-level system =~

10~3

38.60 38.65

Coil current (mA)

38.55

T> ~ 4 us due to flux noise
But large L reduces sensitivity to flux noise

Lin, Nquyen et al.Phys. Rev. Lett. 120, 150503 (2018)



Reproducible world record T2 of superconducting

qubit

Qubit

Ey

Ec

EL N: Tl TQ 'wm/Qﬂ'

GHz

GHz GHz - :,ua ps= GHz

3

0.84

1 100-110 1605 0.78

4.86

0.84
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IBM Q 20 Tokyo: average T1= 78.34us,T2=50.62us

https://www.research.ibm.com/ibm-q/technology/devices/



State of the art of superconducting circuits
IN quantum information science

Quantum Computation
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Quantum Simulation
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Quantum Communication
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Quantum sensing and metrology

Inomata et al, Nat. Comm. 7, 12303 (2016)



IBM roadmap for quantum
computing

Scaling IBM Quantum technology

18M Q System One (Released In development Next family of 1BM Quantum systems

2019 2020 2021 2022 2023 and beyond

27 qubits 65 qubats 127 qubits 433 qubits 1,121 qubits Path to 1 million qubits

and beyond




Google’s roadmap for guantum
computing

Google Al Quantum hardware roadmap

Physics derisked

2019 2029 Year
54 10? 10° 104 10° 10®  Physical qubits
Beyond Logical qubit 1 Iogi(.’al qubit Tileable module Engineering Error-corrected
classical prototype (Logical gate) scale up quantum computer

Error correction
Calibration

Package




Future important development

* Improvement and Scaling up
e Quantum Algorithm

e Quantum error correction and Fault tolerant
guantum computers.

e Application for Noisy Intermediate-Scale Quantum
(NISQ) machine.
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